Опыт фредерика с перекрестным кровообращением у собак

Регуляция дыхания

Для нормального протекания тканевого обмена особенно важны содержание О2 и СО2 в артериальной крови.

Регуляция внешнего дыхания

Во второй половине ХIXвека появилась гипотеза о том, что основными факторами регуляции дыхания являются парциальное давление кислорода и углекислого газа в альвеолярном воздухе и, следовательно в артериальной крови. Экспериментальное доказательство того, что обогащение артериальной крови углекислотой и обеднение кислородом усиливает вентиляцию легких в результате наступающего при этом возбуждения дыхательного центра, было получено в классическом опыте Фредерика с перекрестным кровообращением в 1890г (рисунок 13). У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и отдельно яремные вены. После такого соединения и перевязки позвоночных артерий голова первой собаки снабжалась кровью второй и наоборот. Если у первой собаки перекрывали трахею и вызывали таким путем асфиксию, то у второй собаки развивалосьгиперпноэ— увеличение легочной вентиляции. У первой же собаки, несмотря на увеличение в крови напряжения углекислоты и снижение напряжения кислорода через некоторое время наступалоапноэ— прекращение дыхательных движений. Это объясняется тем, что в сонную артерию первой собаки поступает кровь второй собаки, у которой в результате гипервентиляции снижается содержание углекислоты в артериальной крови. Уже тогда было установлено, что регуляция дыхания происходит путем обратной связи: отклонения в газовом составе артериальной крови приводят путем воздействия на дыхательный центр такие изменения дыхания, которые уменьшают эти отклонения.

img fR VyQ

Рисунок 13. Схема опыта Фредерика с перекрестным кровообращением

Пережатие трахеи у собаки А вызывает одышку у собаки Б. Одышка у собаки Б вызывает замедление и остановку дыхания у собаки А

В начале ХIXвека было показано, что в продолговатом мозге на днеIVжелудочка расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели организма. Этот небольшой участок мозга в нижнем углу ромбовидной ямки был назван дыхательным центром.

В ходе эволюционного развития основная функция в стимуляции дыхательного центра перешла от периферических хеморецепторов к центральным. Речь идет прежде всего о бульбарных хемочувствительных структурах, реагирующих на изменение концентрации ионов водорода и напряжения СО2 во внеклеточной жидкости мозга.За периферическими, артериальными хеморецепторами, которые возбуждаются и при повышении напряжения СО2, и при снижении напряжения кислорода в омывающей их крови, осталась лишь вспомогательная роль в стимуляции дыхания.

Поэтому рассмотрим сначала центральные хеморецепторы, которые оказывают более выраженное влияние на деятельность дыхательного центра.

Источник

Регуляция внешнего дыхания

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

image046

Рисунок 13. Схема опыта Фредерика с перекрестным кровообращением

Пережатие трахеи у собаки А вызывает одышку у собаки Б. Одышка у собаки Б вызывает замедление и остановку дыхания у собаки А

Дальнейшее развитие «гуморальной» теории дыхания (теории управления по отклонению напряжения газов в крови) связано с именем Холдейна. Он разработал методы получения и анализа альвеолярного воздуха у человека и установил, что парциальные давления газов в альвеолярном воздухе обычно колеблются в очень узких пределах. Холдейн пришел к выводу, что основным фактором регуляции дыхания является напряжение углекислоты в артериальной крови. Работы Холдейна получили широкое признание, а его главный вывод о том, что повышение напряжения углекислоты в артериальной крови приводит к большому увеличению МОД, остался справедливым вплоть до настоящего времени. Важная роль углекислоты в регуляции дыхания может быть проиллюстрирована тем, что увеличение содержания СО2 в альвеолах на 0,2 % вызывает увеличение вентиляции легких на 100 %.

Еще в начале ХIX века было показано, что в продолговатом мозге на дне IV желудочка расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели организма. Этот небольшой участок мозга в нижнем углу ромбовидной ямки был назван дыхательным центром.

640 1

В результате в ходе эволюции появились коренные изменения в регуляции дыхания. Гипоксический стимул уступил доминирующую роль гиперкапническому (это, безусловно, не изменило конечной цели функции дыхания: продукция СО2 вполне может служить показателем кислородного запроса ткани).

В этом легко убедиться, глядя на рисунок 14. На этом рисунке представлены изменения вентиляции легких (МОД в л/мин) в ответ на увеличение напряжения углекислого газа в крови – гиперкапнический стимул и в ответ на уменьшение напряжения кислорода в крови – гипоксическийстимул.

В связи с этим, основная функция в стимуляции дыхательного центра перешла от периферических хеморецепторов к центральным. Речь идет прежде всего о бульбарных хемочувствительных структурах, реагирующих на изменение концентрации ионов водорода и напряжения СО2 во внеклеточной жидкости мозга. За периферическими, артериальными хеморецепторами, которые возбуждаются и при повышении напряжения СО2, и при снижении напряжения кислорода в омывающей их крови, осталась лишь вспомогательная роль в стимуляции дыхания.

Поэтому рассмотрим сначала центральные хеморецепторы, которые оказывают более выраженное влияние на деятельность дыхательного центра.

image048

Рисунок 14 Зависимость вентиляции легких

Источник

Мир психологии

психология для всех и каждого

Строение и общие закономерности функционирования органов дыхания. Часть 5.

2009 12 05 13 31 32 1 200 200

2009 12 05 13 31 32 2 200 200

2009 12 05 13 31 32 3 200 200

2009 12 05 13 31 32 4 200 183

2009 12 05 13 31 32 5 200 200

В этой части речь идет о регуляции дыхания: о дыхательном центре, об автоматии дыхательного центра, о влиянии СО2 на состояние дыхательного центра, о механизме влияния СО2 на дыхательный центр.

Регуляция дыхания.

В процессе нервной и гуморальной регуляции дыхания обеспечивается согласованная деятельность дыхательных мышц и ритмическая смена актов вдоха и выхода.

Читайте также:  Unitabs breverscomplex для крупных собак отзывы

Нервная регуляция дыхания осуществляется различными отделами головного мозга, импульсы от которых передаются в спинной мозг, где расположены нейроны, регулирующие дыхательную мускулатуру.

Дыхательный центр.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах центральной нервной системы, обеспечивающих координированную деятельность мышц и приспособление дыхания к изменяющимся условиям внешней и внутренней среды организма.

Н.Д.Миславский (1881) показал, что дыхательный центр располагается в ядрах ретикулярной формации на дне IV желудочка и захватывает несколько миллиметров в обе стороны. Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой же стороны. Миславский высказал мысль о том, что дыхательный центр является собирателем рефлекторных воздействий от всех чувствующих нервов, воздействия от которых влияют на ритм дыхания и координацию дыхательных движений.

Значительно позже рядом исследователей было показано, что в регуляции акта дыхания принимают участие и другие отделы центральной нервной системы.

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. НА РИСУНКЕ показано расположение нейронов дыхательного центра в различных отделах центральной нервной системы.

Экспираторный и инспираторный центры находятся в реципрокных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным волокнам блуждающего нерва поступают в дыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотаксический центр, который свои влияния осуществляет через нейроны экспираторного центра. РИСУНОК. В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции торможение инспираторного центра, что приводит к смене вдоха не выдох.

Таким образом, регуляция дыхания осуществляется благодаря согласованной деятельности всех отделов центральной нервной системы, объединенных понятием дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автоматия дыхательного центра.

Способность дыхательного центра к автоматии впервые обнаружена И.М.Сеченовым (1882 г) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в центральную нервную систему, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра говорит опыт Гейманса с изолированной головой собаки. Ее мозг был перерезан на уровне середины моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки выше названных нервов). Но тем не менее у животного сохранялись ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (pH крови, содержания СО2 и кислорода в крови и др.).

Последующими исследованиями ряда авторов было показано, что в регуляции дыхания важно не только изменение pH крови, но и содержание углекислоты, как специфически действующего фактора.

Влияние СО2 на состояние дыхательного центра.

Влияние СО2 на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки РИСУНОК. Так же перекрестно соединяются и яремные вены: центральный конце яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате этого кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки поступает к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдалось увеличение глубины и частоты дыхания у второй собаки (диспноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов и в крови увеличивалось содержание СО2 (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось диспноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание СО2 (гипокапния) и увеличивалось содержание О2. Кровь с уменьшенным содержанием СО2 поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Влияние на дыхание содержания углекислого газа во вдыхаемом воздухе было показано Холденом в опытах на человеке. Человека помещали в небольшую герметически закрытую камеру, постепенно у него возникало диспноэ вследствие увеличения содержания СО2 во вдыхаемом воздухе. В этих же опытах было показано, что уменьшение содержания кислорода во вдыхаемом воздухе не влияет на дыхание: когда из камеры поглотителем извлекали углекислый газ, диспноэ не наступало. С увеличением содержания СО2 во вдыхаемом воздухе возрастает легочная вентиляция.

Читайте также:  От чего бывает отек легких у собак

Зависимость величины легочной вентиляции от содержания СО2 во вдыхаемом и альвеолярном воздухе (в %).

Содержание СО2 в воздухе Легочная вентиляция
во вдыхаемом в альвеолярном
0,03 5,71 100
3,98 6,03 277
5,28 6,55 477

В настоящее время установлено, что при увеличении содержания О2 в крови на 0,2% легочная вентиляция возрастает на 100%.

О влиянии содержания СО2 в крови на дыхание говорят и простейшие опыты с гипо- и гипервентиляцией легких. Если человек произвольно задержит дыхание, то через некоторое время задержка сменяется глубоким и частым дыханием. Это происходит вследствие того, что во время задержки дыхания в крови накапливается СО2. Кровь с увеличенным содержанием углекислоты омывает клетки дыхательного центра и стимулирует его деятельность.

Если человек будет производить глубокие вдохи и выдохи (гипервентиляцию легких), то через некоторое время наступает кратковременная задержка дыхания.

После задержки дыхания оно становится неровным, а его амплитуда и частота несколько уменьшаются по сравнению с исходным уровнем, имеющем место до гипервентиляции РИСУНОК. Эти изменения дыхания связаны с тем, что во время гипервентиляции легких из крови удаляется большое количество СО2, что вызывает падение активности дыхательного центра.

При вдыхании газовой смеси с повышенным содержанием СО2 у человека наступает резкое увеличение глубины дыхательных движений РИСУНОК.

Механизм влияния СО2 на дыхательный центр.

В последнее время показано наличие хеморецепторов в ретикулярной формации мозгового ствола. Они представляют собой тельца величиной около 2 мм, располагающиеся с двух сторон от дыхательного центра на вентролатеральной поверхности продолговатого мозга, вблизи от места выхода подъязычного нерва.

Именно быстрой диффузией СО2 через мембрану хеморецепторных клеток объясняется избирательность действия угольно кислоты на дыхательный центр.

Источник

ЧИТАТЬ КНИГУ ОНЛАЙН: Механизмы регуляции вегетативных функций организма

НАСТРОЙКИ.

sel back

sel font

font decrease

font increase

СОДЕРЖАНИЕ.

СОДЕРЖАНИЕ

2

Глазырина П.В., Бурмистрова Т.Д., Карауловский Н.Н.

Механизмы регуляции вегетативных функций организма

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов биологических и медицинских специальностей вузов. Рецензенты: Кафедра нормальной физиологии Воронежского медицинского института; кафедра нормальной физиологии Винницкого ме­дицинского института.

При преподавании курса нормальной физиологии в ву­зах значительное место отводится изучению вегетатив­ных функций организма. Многолетний опыт показал, что наибольшие трудности для студентов представляют во­просы регуляции этих функций. Предлагаемое учебное пособие позволит студентам наиболее полно изучить эти вопросы и поможет при самостоятельной подготовке к пра­ктическим занятиям по соответствующим темам.

В каждой главе рассматриваются: 1) основные ме­ханизмы регуляции соответствующих функций, узловые положения которых прежде всего необходимо усвоить для понимания темы в целом; 2) контрольные вопросы и проблемные или ситуационные задачи для самопровер­ки усвоения материала (в конце пособия приводятся ответы к этим задачам); 3) схемы механизмов регуля­ции каждой функции.

В проблемных задачах приводятся экспериментальная или клиническая ситуация, определенные результаты опыта и ставится вопрос, ответ на который требует оценки ситуации на основе знания сущности физиологиче­ских механизмов регуляции функций организма.

Все схемы построены по единому плану — в соответ­ствии с Принципиальной схемой регуляции физиологиче­ских функций (схема 1), что позволяет привести в еди­ную систему, знания о регуляции вегетативных про­цессов в организме. В схемах выделены следующие основные блоки и механизмы: 1) объект управления (рабочий орган) и регулируемые параметры; 2) упра­вляющие системы (отделы мозга, железы внутренней секреции); 3) пути реализации управляющих воздействий (прямые связи); 4) полезный приспособительный ре­зультат регуляции; 5) оценка достигнутого результата (обратные связи); 6) возмущающие воздействия, вклю­чающие механизмы регуляции.

В схемах, иллюстрирующих механизмы регуляций, передача возбуждающих влияний показана сплошными линиями, а тормозных влияний — пунктиром. Желающие могут воспользоваться списком литерату­ры, прилагаемым к пособию.

Живой организм представляет собой чрезвычайно сложную систему, функционирующую как единое целое в постоянно меняющейся внешней среде. Еще И. П. Пав­лов говорил: «Человек есть, конечно, система (грубее го­воря — машина), как и всякая другая в природе, под­чиняющаяся неизбежным единым законам; но система. единственная по высочайшему саморегулированию. сама себя поддерживающая, восстанавливающая, поправляю­щая и даже совершенствующая» (Павлов И.П. Полн. собр. соч. М., 1951, т. 3, вып. 2, с. 187—188).

image002

Взаимосвязь организма со средой осуществляется че­рез его функции. Функции — это проявления жизнедея­тельности клетки, органа, системы органов или целостно­го организма, имеющие приспособительное значение (приспособление к среде или приспособление среды к сво­им потребностям). Из сочетания нескольких функций складываются сложные физиологические акты.

Функцию любого органа мы обычно связываем с де­ятельностью его специализированных паренхиматозных элементов (мышечные волокна, железистый эпителий), так как именно в деятельности этих элементов выраже­ны организменные параметры, специализированные свой­ства организма. В то же время необходимо помнить, что эти функции паренхимы невозможны без сопутству­ющего неспецифического тканевого компонента — струк­турной и трофической функции соединительнотканной стромы.

В советской физиологии А. М. Чернухом (1973) вве­дено понятие о функциональном элементе органа, т.е. многоклеточном комплексе, представленном как минимум клетками трех гистологических тканей, реализующих спе­цифическую функцию на периферии (мышечная или эпи­телиальная ткани), трофику органа и микроциркуляцию в нем (соединительная ткань), а также регуляцию этих процессов (нервная ткань). Будучи функциональной еди­ницей органа, функциональный элемент в целом опре­деляет деятельность каждого органа в организме.

Организм имеет множество тканей, органов, морфофункциональных систем органов, но в то же время он отличается внутренним и внешним единством — целост­ностью. Вспомним определения, которые дают организму Ф. Энгельс и И.М. Сеченов.

По определению Ф. Энгельса «организм не являет­ся ни простым, ни составным, как бы он ни был сло­жен» (Маркс К., Энгельс Ф. Соч. 2-е изд., т. 20, с. 529).

Читайте также:  Айтматов чингиз пегий пес бегущий краем моря краткое содержание

И. М. Сеченов указывал, что «организм без внешней среды, поддерживающей его существование, невозмо­жен; поэтому в научное определение организма должна входить и среда, влияющая на него. Так как без по­следней существование организма невозможно, то споры о том, что в жизни важнее, среда ли, или самое тело, не имеют ни малейшего смысла» (Сеченов И. М. Избр. произв. М., 1952, т. 1, с. 533).

Организм как сложная целостная система может су­ществовать и быть приспособленным к среде, если его функции взаимосвязаны и взаимообусловлены, что обес­печивается постоянной интеграцией функций. Интегра­ция в организме, взаимосвязь и взаимодействие его ор­ганов и тканей, его единство и целостность во взаимо­действиях со средой определяются деятельностью регуляторных механизмов, сформировавшихся в процессе филогенеза.

Под регуляцией понимают совокупность физиологи­ческих механизмов, обеспечивающих функционирование организма как целого и согласованность его функций в процессе взаимодействия с внешней средой. Регуля­ция оптимизирует функциональную активность организ­ма, поддерживает относительное постоянство его внутрен­ней среды и переключает деятельность органов и систем на новые уровни в соответствии с условиями среды и внут­ренними потребностями организма. Регуляция любой фун­кции в принципе может быть представлена в виде еди­ной схемы (схема 1).

Регуляция функций и физиологических актов целост­ного организма осуществляется посредством трех меха­низмов: филогенетически более древнего местного и более поздних — гуморального и нервного, последние два ме­ханизма в отличие от первого носят общий, системный характер. Между всеми механизмами регуляции сущест­вует постоянное взаимодействие.

Местный механизм регуляции состоит в том, что изменение состояния органа, возникшее в процессе его состояния. Так, степень растяжения мышеч­ной ткани полых органов (сердце, гладкие мышцы со­судов и пищеварительных органов) определяет амплиту­ду их последующего сокращения. Между этими двумя состояниями (растяжением и сокращением) имеется опре­деленная линейная зависимость.

Продукты обмена и биологически активные вещества, вырабатываемые в тканях и органах в процессе их фун­кционирования, также могут участвовать в местной регу­ляции их функции как путем прямого влияния на специа­лизированные клетки, так и путем воздействия на гладкие мышцы сосудов и изменения кровотока в органе. Мест­ная регуляция обычно всегда направлена на обеспечение оптимального выполнения функции данного органа.

Гуморальный механизм регуляции осуществляется через жидкие среды организма: кровь, лимфу, ткане­вую жидкость, ликвор при поступлении в них специ­альных химических регуляторов — гормонов, нейросекретов. Такое же действие могут оказывать многие биоло­гически активные вещества и метаболиты, поступая в общий кровоток.

Гуморальная регуляция путем переноса метаболитов развилась сравнительно рано. Включение в гуморальную регуляцию нейросекретов и особенно гормонов явилось более поздним достижением эволюции.

Источник

Спр. материал / ДЫХАНИЕ / 10.НЕЙРОГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ИНТЕНСИВНОСТИ ДЫХАНИЯ

НЕЙРОГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ИНТЕНСИВНОСТИ ДЫХАНИЯ

А. Непосредственное влияние изменения газо­вого состава крови на дыхательный центр продемонстрировано в опытах Фредерика и Холдена.

Опыт Фредерика на двух собаках с перекрестным кровообращением (рис. 12.8) вы­полняют следующим образом.

У обеих собак (первой и второй) перерезают сонные артерии и перекрестно их соединяют. Так же поступают и с яремными венами. Позвоноч­ные артерии перевязывают. В результате этих опе­раций голова первой собаки получает кровь от второй собаки, а голова второй собаки — от пер­вой. У первой собаки перекрывают трахею, что

вызывает гипервентиляцию (частое и глубокое дыхание) у второй собаки, в голову которой по­ступает кровь от первой собаки, обедненная кис­лородом и обогащенная углекислым газом. У пер­вой собаки наблюдается апноэ (остановка дыха­ния), в ее голову поступает кровь с более низким напряжением СО2 и примерно с обычным, нор­мальным содержанием О2: гипервентиляция вы­мывает СС>2 и практически не влияет на содержа­ние СЬ в крови, так как гемоглобин насыщен С>2 практически полностью. Результаты опыта Фреде­рика свидетельствуют о том, что дыхательный центр возбуждается либо избытком углекислого газа, либо недостатком кислорода.

Опыт Холдена уточняет: главным стимулятором дыхания является ССЬ, недостаток кислорода не возбуждает дыхательный центр. Опыт ставится следующим образом (один из вари­антов). Испытуемый дышит через газообменную маску, соединенную мешком Дугласа с атмосфер­ным воздухом. Вдыхает испытуемый из мешка и выдыхает в мешок. По мере расходования кисло­рода и накопления углекислого газа развивается одышка — первая часть опыта. Исследуют состав газа в мешке и определяют процентное содержа­ние О2 и СО2- Затем заменяют воздух в мешке и повторяют опыт, но выдыхаемый воздух проходит через поглотитель СО2 (натронная известь) — вто­рая часть опыта. Несмотря на расход кислорода в мешке, одышки у испытуемого не возникает. Проводят анализ газа в мешке и убеждаются, что содержание О2 сильно уменьшилось, а СО2 — не изменилось. Результат опыта свидетельствует, что главным стимулятором дыхания является СО2.

дыхания зависит от напряжения в артериаль­ной крови СО2 — конечного продукта окис­лительного метаболизма. Благодаря этому достигается соответствие вентиляции легких метаболическим потребностям организма. Важную роль в регуляции дыхания играет также рН крови. При снижении рН артери­альной крови по сравнению с нормальным уровнем (7,4) вентиляция легких увеличива­ется. В случае возрастания рН выше нормы вентиляция уменьшается, хотя и в меньшей степени. Увеличение содержания СО2 в крови стимулирует дыхание как за счет сни­жения рН, так и непосредственным действи­ем самого СО2.

Влияние СО2 и ионов Н + на дыхание опосредовано главным образом их действием на особые структуры ствола мозга, обладаю­щие хемочувствительностью (центральные хеморецепторы).

Увеличение содержания СО2 в альвеолах на 0,2 % ведет к увеличению вентиляции лег­ких на 100 %, при повышении РСО2 в арте­риальной крови от 40 до 60 мм рт.ст. вен­тиляция легких возрастает примерно от 7 до 60 л/мин. При РСО2 70 мм рт.ст. дыхание тормозится. Таким образом, интенсивность

Источник

Поделиться с друзьями
admin
Транспорт и перевозки